
1 © 2019 IBM Corporation

Advanced SQL Set
Processing

Rob Bestgen
Db2 for i Consultant

bestgen@us.ibm.com

Omni
Oct

20
19

2 © 2019 IBM Corporation

Thinking in Sets

A carefully crafted SELECT statement is basically a
contract between you and the database

You are precisely describing the inputs and the contents
and format of the result set

 It is up to the database to choose the most efficient way of
providing your result set

Traditional languages using Record Level Access (RLA)
are very row based in their approach

SQL works best when you think in terms of sets
Omni

Oct
20

19

3 © 2019 IBM Corporation

Question: number of customers in China?

CustomersLocations

Question: who are the customers in China?

Count what’s here

Return what’s here

SQL – Working with Sets

Omni
Oct

20
19

4 © 2019 IBM Corporation

T1 T2 T3 T4

HLL PGM or Interface

DB2

Results

Data Centric Overview – Leveraging the Database

Omni
Oct

20
19

5 © 2019 IBM Corporation

Omni
Oct

20
19

6 © 2019 IBM Corporation

DECLARE CURSOR cursor1 FOR
SELECT cust_id, prod_id, quantity, amount
FROM orders
WHERE transaction_date = :v_date;

OPEN cursor1;

DO
FETCH cursor1
INTO :v_custid, :v_prodid, :v_qty, :v_amt;

SELECT cust_name, cust_address
INTO :v_name, :v_address
FROM customers
WHERE custid= :v_custid;

SELECT prod_name INTO :v_prodname
FROM products
WHERE prodid= :v_prodid;

INSERT INTO daily_thank_you_log VALUES
(:v_name, :v_address, :v_prodname, :v_qty, :v_amt);

UNTIL (no more data);

CLOSE cursor1;

A working, procedural based program

Omni
Oct

20
19

7 © 2019 IBM Corporation

DECLARE CURSOR cursor1 FOR
SELECT cust_id, prod_id, quantity, amount
FROM orders
WHERE transaction_date = :v_date;

OPEN cursor1;

DO
FETCH cursor1
INTO :v_custid, :v_prodid, :v_qty, :v_amt;

SELECT cust_name, cust_address
INTO :v_name, :v_address
FROM customers
WHERE custid= :v_custid;

SELECT prod_name INTO :v_prodname
FROM products
WHERE prodid= :v_prodid;

INSERT INTO daily_thank_you_log VALUES
(:v_name, :v_address, :v_prodname, :v_qty, :v_amt);

UNTIL (no more data);

CLOSE cursor1;

Our ‘program’ revisited

INSERT INTO daily_thank_you_log
SELECT c.cust_name, c.cust_address,

p.prod_name,
o.quantity, o.amount

FROM orders o
INNER JOIN customers c

ON c.custid= o.cust_id
INNER JOIN products p

ON p.prodid = o.prod_id
WHERE o.transaction_date = :v_date

Much
better!!

Omni
Oct

20
19

8 © 2019 IBM Corporation

Omni
Oct

20
19

9 © 2019 IBM Corporation

SQL is commonly used in the single SELECT form
• SELECT … FROM… WHERE

And it is very powerful
• Can do join, filtering, projection….

But SQL becomes even more powerful when
combining more than one SELECT
• Can leverage more set thinking!

Omni
Oct

20
19

10 © 2019 IBM Corporation

Set Operators

Use Set operators to combine results from multiple subselects
 UNION – combine into a distinct result set
 UNION ALL – append result sets
 INTERSECT – return only distinct rows found in both result sets
 EXCEPT – return distinct rows from first subselect not found in second

subselect

Examples:
– Return all (distinct) rows that are in t1, but not t2

(SELECT cusnum FROM orders2018)
EXCEPT

(SELECT cusnum FROM orders2019)

– All (distinct) rows that exist in both t1 & t2
(SELECT cusnum FROM orders2018)
INTERSECT

(SELECT cusnum FROM orders2019)

Omni
Oct

20
19

11 © 2019 IBM Corporation

Subselects

Subselect, as the name implies, is a:
1. SELECT statement
2. within (‘sub’) an SQL statement

Subselects are the underpinning for many advanced SQL
techniques

Strong suggestion:
Qualify your column references!Omni

Oct
20

19

12 © 2019 IBM Corporation

Subselects can be independent or dependent

 Independent – aka non-Correlated
– Subselect (along with any of its inner components) is autonomous
– Example:
SELECT e.last_name FROM employee e
WHERE deptnum IN

(SELECT l.deptno FROM location l WHERE l.name = ‘Indy’)

 Dependent – aka Correlated
– Dependent on outer row for evaluation because of a reference
– Example:
SELECT last_name FROM employee x
WHERE x.salary >

(SELECT AVG(y.salary) FROM employee y
WHERE x.deptnum = y.deptnum)

Subselect dependence

Omni
Oct

20
19

13 © 2019 IBM Corporation

SELECT C.CUSTNAME, O.ORDERDATE, I.ITEMNAME, O.QUANTITY
FROM ORDERS O

INNER JOIN CUSTOMER C ON O.CUSTNO = C.CUSTNO
INNER JOIN ITEMS I ON O.ITEMNUM = I.ITEMNUM

WHERE O.ORDERDATE =
(SELECT MAX(O2.ORDERDATE)
FROM ORDERS O2
WHERE O.CUSTNO = O2.CUSTNO)

Subquery example:

Return the details of the latest order for each of my customers

Omni
Oct

20
19

14 © 2019 IBM Corporation

SELECT contact_name, contact_phone FROM contact o
WHERE (o.contact_state, o.contact_id) IN (

SELECT c.state, c.custid FROM customer c)

Row subquery

BTW, you can compare more than a single
column with an IN subquery:

Omni
Oct

20
19

15 © 2019 IBM Corporation

Derived Tables
Common Table Expressions

Views

Omni
Oct

20
19

16 © 2019 IBM Corporation

But First, some VALUES

VALUES –
 A table-less result set. A way to produce an answer set out of thin air

 You’ve probably used it in INSERT statements
INSERT INTO mytab VALUES(1,2,3)

 But it can also be used as a source of data in most any query
SELECT * FROM TABLE(VALUES(1,2,3)) X(C1, C2, C3)

 Including multiple rows
SELECT * FROM TABLE(VALUES(1,2,3),(4,5,6)) X(C1, C2, C3)

It can be a very handy tool in the toolbox
Omni

Oct
20

19

17 © 2019 IBM Corporation

Derived Tables

Derived Tables are subselects embedded in a FROM clause
that produce a set of rows

– A virtual table

SELECT e.name as mgrname, d1.deptno as dept,
d1.empcount as numemployees

FROM employees e inner join
(SELECT deptno, COUNT(*) as empcount
FROM employee GROUP BY deptno) d1

ON e.deptno = d1.deptnoOmni
Oct

20
19

18 © 2019 IBM Corporation

Derived Tables…

A Derived Table can be laterally correlated*
– Its results are dependent on a table to the ‘left’
– Must use the LATERAL keyword
– Good way to ‘pivot’ multiple columns into rows

SELECT A.NAME, A.APP_NBR,
L.PROPERTY_ASPECT , L.SCORE

FROM HOME_LOAN_APPS A CROSS JOIN
LATERAL
(SELECT

PROPERTY_ASPECT, SCORE
FROM TABLE
(VALUES

(‘Location', A.LOC),
(‘Structures' , A.STRCTR),
(‘Age Of Buildings', A.AGE)

) E(PROPERTY_ASPECT,SCORE)
) L

* Can be used with inner, left outer joins, left exception, and cross joins

CREATE TABLE HOME_LOAN_APPS
(NAME VARCHAR(128),
APP_NBR INT,
LOC CHAR(5),

STRCTR CHAR(5),
AGE CHAR(5));

Omni
Oct

20
19

19 © 2019 IBM Corporation

Common Table Expressions (CTEs)

Common Table Expressions (CTEs) produce a result set
 Virtual temporary table – avoid physical work tables
 Can be referenced multiple times
 Divides a report into logical steps
 Can be used to perform Recursive SQL!

WITH staff (deptno, empcount) AS
(SELECT deptno, COUNT(*) FROM employee
WHERE division = :div_var GROUP BY deptno)

SELECT deptno, empcount FROM staff
WHERE empcount >

(SELECT AVG(empcount) FROM staff)

Omni
Oct

20
19

20 © 2019 IBM Corporation

CTEs – Thinking in Sets …
• What if you want a list of customers who were in the “top 10” for two

consecutive years? Think in sets …

WITH top10_2017 (customer_name, total_sales) AS
(SELECT customer_name, SUM(sales) FROM sales

WHERE year=2017
GROUP BY customer_name
ORDER BY SUM(sales) DESC
FETCH FIRST 10 ROWS ONLY) ,

top10_2018 AS
(SELECT customer_name, SUM(sales) total_sales FROM sales

WHERE year=2018
GROUP BY customer_name
ORDER BY SUM(sales) DESC
FETCH FIRST 10 ROWS ONLY)

SELECT y1.customer_name,
y1.total_sales AS sales2017, y2.total_sales AS sales2018
FROM top10_2017 y1 INNER JOIN top10_2018 y2
ON y1.customer_name = y2.customer_name

Which
column
naming

approach is
better?

Omni
Oct

20
19

21 © 2019 IBM Corporation

CTEs: Recursive (Hierarchical) SQL

Perform a Recursive Query with CTEs!

 Useful for navigating tables where rows are inherently related to other rows in same table
– Bill of Materials, Organizational Hierarchies, etc…

WITH emp_list (level, empid, name) AS
(SELECT 1, empid, name FROM emp

WHERE name = 'Carfino‘
UNION ALL

SELECT o.level + 1, next_layer.empid, next_layer.name
FROM emp as next_layer, emp_list o

WHERE o.empid = next_layer.mgrid)
SELECT level, name FROM emp_list

1 - Initializing the query

2 – Recursive reference
to the next level

3 – Start the query &
return final results

Omni
Oct

20
19

22 © 2019 IBM Corporation

Recursive SQL simple case alternative
- CONNECT BY

WITH emp_list (level, empid, name) AS
SELECT 1, empid, name FROM emp

WHERE name = 'Carfino‘
UNION ALL

SELECT o.level+1, next_layer.empid, next_layer.name
FROM emp as next_layer, emp_list o
WHERE o.empid = next_layer.mgrid)

SELECT level, name FROM emp_list

Olson

CarfinoLester

Davis Payne

Lohaus
Brookins

Horton

Bullard
Settles

…SELECT LEVEL, name
FROM emp

START WITH name = 'Carfino'
CONNECT BY mgrid = PRIOR empid

Omni
Oct

20
19

23 © 2019 IBM Corporation

CTEs: Recursive SQL – Hierarchical SQL

RCTE vs. CONNECT BY. Which is better?

Both have advantages:

 RCTE – More complex definitions allowed
 CONNECT BY – more options to control circular loops and depth

Use the one that ‘speaks’ to you.

Omni
Oct

20
19

24 © 2019 IBM Corporation

CTEs: Recursive SQL

How about generating sales info for each day of this month

WITH month_days (d, DayOfMonth) AS
(VALUES(CURRENT DATE – (DAY(CURRENT DATE) – 1) DAYS, 1)

UNION ALL
SELECT d+1 DAYS, DAY(d+1 DAYS) FROM month_days
WHERE MONTH(d+1 DAYS) = MONTH(CURRENT DATE)

)
SELECT s.order_date, sum(s.sales) as totsales
FROM sales s INNER JOIN month_days m
ON s.order_date = m.d Omni

Oct
20

19

25 © 2019 IBM Corporation

Logical Separation
Using Views

Omni
Oct

20
19

26 © 2019 IBM Corporation

Remember to Use SQL Views

An SQL view provides many advantages

 Encapsulate common ‘patterns’ in queries into a single location

 SQL views provide a way to logically separate the application from the
physical database layout

 Views are performance neutral. They neither hurt (nor help) performance.
The optimizer merges the view definition with the query

CREATE VIEW active_employee AS
(SELECT d1.* FROM employee d1
WHERE d1.deptno IN
(SELECT p.deptnum
FROM projects p
where status=‘active’))

.

SELECT *
FROM active_employee d1
WHERE d1.empid = ?
.
.
.

SELECT count(*)
FROM active_employee d1

Omni
Oct

20
19

27 © 2019 IBM Corporation

Thank you!

Omni
Oct

20
19

