Advanced SQL Set
Processing

Rob Bestgen
Db2 for i Consultant
bestgen@us.ibm.com

L.Jn‘

© 2019 IBM Corporation

|]|
[
11
]

= A carefully crafted SELECT statement is basically a
contract between you and the database

* You are precisely describing the inputs and the contents
and format of the result set

= |t is up to the database to choose the most efficient way of
providing your result set

» Traditional languages using Record Level Access (RLA)
are very row based in their approach

» SQL works best when you think in terms of sets

© 2019 IBM Corporation

SQL — Working with Sets

Question: number of customers in China?
Count what’s here

Locations

Question: who are the customers in China? Return what's here

© 2019 IBM Corporation

Data Centric Overview — Leveraging the Database

HLL PGM or Interface >

Results

T T2 T3

T4

© 2019 IBM Corporation

Programming in Sets

A working, procedural based program
DECLARE CURSOR cursor1 FOR

SELECTeust_id, prod_id, quantity, amount

FRO What are we trying to do??
WHERE transaction_date = :v_date;

OPEN cursort: Express it in ‘business’ terms
DO

FETCH cursor1
INTO :v custid, :v prodid, :v qty, :v_amt; .
- -P —A Y Generate a list of customer orders
SELECT cust_name, cust_address

INTO v name._-v address for a given day so we can send

FRO them ‘thank you’ emails
WHERE cu

d= :v_custid;

SELECT prod_name INTO :v_prodname

WHERE prodid= :v_prodid;

INSERT INTO daily_thank you log VALUES
(:v_name, :v_address, :v_prodname, :v_qty, :v_amt);

UNTIL (no more data);

CLOSE cursor1;

© 2019 IBM Corporation

|

Our ‘program’ revisited

DECLARE CURSOR cursor1t FOR
SELECT cust_id, prod_id, quantity, amount
FROM orders

WHERE transaction_date = :v_date;

DO SELECT c.cust_name, c.cust_address,
FETCH cursor — p.prod_name,
INTO :v_custid, :v_prodid, :v_qty, :v_amt; 0.quantity, o.amount
SELECT cust_name, cust_address FROM orders o
INTO :v_name, :v_address ‘ INNER JOIN customers ¢
FROM customers ON c.custid= o.cust_id

WHERE custid= :v_custid; INNER JOIN products p

SELECT prod_name INTO :v_prodname ON p.pl’Odid — o.prod id
WHERE oot -WHERE t tion_date = :v_dat

INSERT INTO daily_thank you log VALUES
(:v_name, :v_address, :v_prodname, :v_qty, :v_amt);

UNTIL (no more data);

CLOSE cursor1;

7 © 2019 IBM Corporation

Sets and SQL

SQL is commonly used in the single SELECT form
SELECT ... FROM... WHERE

And it is very powerful

Can do join, filtering, projection....

But SQL becomes even more powerful when
combining more than one SELECT

Can leverage more set thinking!

|]|
[
11
n

© 2019 IBM Corporation

gl
lI|[||

]

Use Set operators to combine results from multiple subselects
= UNION — combine into a distinct result set
= UNION ALL — append result sets

* INTERSECT - return only distinct rows found in both result sets

= EXCEPT — return distinct rows from first subselect not found in second
subselect

Examples:

— Return all (distinct) rows that are in t1, but not t2
(SELECT cusnum FROM orders2018)
EXCEPT
(SELECT cusnum FROM orders2019)

— All (distinct) rows that exist in both t1 & t2

(SELECT cusnum FROM orders2018)
INTERSECT
(SELECT cusnum FROM orders2019)

10 © 2019 IBM Corporation

11

Subselect, as the name implies, is a:
1. SELECT statement

2. within (‘sub’) an SQL statement

Subselects are the underpinning for many advanced SQL
techniques

Strong suggestion:

Qualify your column references!

© 2019 IBM Corporation

Subselects can be independent or dependent

* Independent — aka non-Correlated

— Subselect (along with any of its inner components) is autonomous
— Example:
SELECT e.last name FROM employee e

WHERE deptnum IN
(SELECT I.deptno FROM location I WHERE l.name = “Indy”)

* Dependent — aka Correlated

— Dependent on outer row for evaluation because of a reference

— Example:
SELECT last_name FROM employee X
WHERE x.salary >
(SELECT AVG(y.salary) FROM employee y
WHERE Xx.deptnum = y._deptnum)

12 © 2019 IBM Corporation

Return the details of the latest order for each of my customers

SELECT C.CUSTNAME, O.ORDERDATE, [I.ITEMNAME, O.QUANTITY
FROM ORDERS O

INNER JOIN CUSTOMER C ON O.CUSTN

O
INNER JOIN ITEMS 1 ON O.ITEMNUM =
WHERE O.ORDERDATE =

= C.CUSTNO
1. I TEMNUM

(SELECT MAX (02 .ORDERDATE)
FROM ORDERS 02

WHERE O.CUSTNO = 02_.CUSTNO)

13

© 2019 IBM Corporation

14

BTW, you can compare more than a single
column with an IN subquery:

SELECT contact name, contact phone FROM contact o
WHERE (o.contact state, o.contact i1d) IN (

SELECT c.state, c.custid FROM customer c)

© 2019 IBM Corporation

15

Derived Tables
Common Table Expressions
Views

||||n||
)
[yl
i)

VALUES -

» A table-less result set. A way to produce an answer set out of thin air
» You've probably used it in INSERT statements
INSERT INTO mytab VALUES(1,2,3)

» But it can also be used as a source of data in most any query
SELECT * FROM TABLE(VALUES(1,2,3)) X(C1, C2, C3)

* Including multiple rows

SELECT * FROM TABLE(VALUES(1,2,3),(4,5,6)) X(C1, C2, C3)

It can be a very handy tool in the toolbox

16

© 2019 IBM Corporation

17

Derived Tables are subselects embedded in a FROM clause

that produce a set of rows
— Avirtual table

SELECT e.name as mgrname, dl.deptno as dept,
dl.empcount as numemployees
FROM employees e i1nner join

(SELECT deptno, COUNT(*) as empcount

FROM employee GROUP BY deptno) di

ON e.deptno = dl.deptno

© 2019 IBM Corporation

Derived Tables...

A Derived Table can be laterally correlated*

— lts results are dependent on a table to the ‘left
— Must use the LATERAL keyword CREATE TABLE HOME_LOAN_APPS

" (NAME VARCHAR(128), |

— Good way to ‘pivot’ multiple columns into rows | APP_NBRIINT, |
. LOC CHAR(5), i

SELECT A.NAME, A.APP_NBR, ' STRCTR CHAR(5),

L.PROPERTY_ASPECT, L.SCORE AGE CHAR(5)) _____________________
FROM HOME_LOAN_APPS A CROSS JOIN
LATERAL
(SELECT
PROPERTY_ASPECT, SCORE
FROM TABLE
(VALUES
(‘Location’, A.LOC),
(‘Structures', A.STRCTR),
(‘Age Of Buildings®’, A.AGE)
) E(PROPERTY_ASPECT,SCORE)
)L

18 * Can be used with inner, left outer joins, left exception, and cross joins 62019 1B Corporation

Common Table Expressions (CTEs) produce a result set

= Virtual temporary table — avoid physical work tables
= Can be referenced multiple times

» Divides a report into logical steps

= Can be used to perform Recursive SQL!

WITH staff (deptno, empcount) AS
(SELECT deptno, COUNT(*) FROM employee
WHERE division = :zdiv_var GROUP BY deptno)

SELECT deptno, empcount FROM
WHERE empcount >

(SELECT AVG(empcount) FROM)

19

© 2019 IBM Corporation

20

il
il
i

« What if you want a list of customers who were in the “top 10” for two
consecutive years? Think in sets ...

WITH top10_ 2017 (customer_name, total sales) AS

(SELECT customer_name, SUM(sales) FROM sales
WHERE year=2017
GROUP BY customer_name
ORDER BY SUM(sales) DESC
FETCH FIRST 10 ROWS ONLY) ,

top10_2018 AS

(SELECT customer_name, SUM(sales) total _sales FROM sales
WHERE year=2018
GROUP BY customer_name
ORDER BY SUM(sales) DESC
FETCH FIRST 10 ROWS ONLY)

SELECT y1.customer _name,
y1.total sales AS sales2017, y2.total sales AS sales2018
FROM top10_ 2017 y1 INNER JOIN top10_ 2018 y2
ON y1.customer_name = y2.customer_name

© 2019 IBM Corporation

Perform a Recursive Query with CTES!

= Useful for navigating tables where rows are inherently related to other rows in same table
— BiIll of Materials, Organizational Hierarchies, etc...

WITH emp_list (level, empid, name) AS

(SELECT 1, empid, name FROM emp ¢— — 1 - Initializing the query
WHERE name = 'Carfino’
UNION ALL

SELECT o.level + 1, next_layer.empid, next_layer.name
FROM emp as next_layer, emp_list o

-~ 2 — Recursive reference
WHERE o.empid = next_layer.mgrid) to the next level

SELECT level, name FROM emp_list

- 3 - Start the query &
return final results

21 © 2019 IBM Corporation

Recursive SQL simple case alternative

Olson
- CONNECT BY / N\
Lester .-~ Carfino
SELECT LEVEL, name 7/
, Davis Payne
FROM emp
START WITH name = 'Carfino’ | Lohaus — |:BU"ard ,
CONNECT BY mgrid = PRIOR empid \Brookins — Settles
* Horton =
] 1§Carﬁnn
WITH emp_list (level, empid, name) AS 2|Davis
SELECT 1, empid, name FROM emp 3|Brookins
WHERE name = 'Carfino* 3|Lohaus
UNION ALL J|Horton
SELECT o.level+1, next_layer.empid, next_layer.name 2|Payne
FROM emp as next_layer, emp_list o 3|Bullard
WHERE o.empid = next_layer.mgrid) 3|Settles

SELECT level, name FROM emp _list

22 © 2019 IBM Corporation

RCTE vs. CONNECT BY. Which is better?

Both have advantages:

» RCTE — More complex definitions allowed
= CONNECT BY — more options to control circular loops and depth

Use the one that ‘speaks’ to you.

23

|]|
[
11
n

© 2019 IBM Corporation

|]|
[
11
]

How about generating sales info for each day of this month

WITH month_days (d, DayOfMonth) AS

(VALUES(CURRENT DATE — (DAY(CURRENT DATE) — 1) DAYS, 1)
UNION ALL

SELECT d+1 DAYS, DAY(d+1 DAYS) FROM month_days

WHERE MONTH(d+1 DAYS) = MONTH(CURRENT DATE)
)

SELECT s.order_date, sum(s.sales) as totsales

FROM sales s INNER JOIN month_days m
ON s.order_date = m.d

24

© 2019 IBM Corporation

25

Logical Separation
Using Views

Remember to Use SQL Views

An SQL view provides many advantages

» Encapsulate common ‘patterns’ in queries into a single location

= SQL views provide a way to logically separate the application from the
physical database layout

» Views are performance neutral. They neither hurt (nor help) performance.
The optimizer merges the view definition with the query

CREATE VIEW active_employee AS SELECT >
(SELECT d1.* FROM employee d1 FROM active_employee dl
WHERE d1.deptno IN WHERE d1.empid = ?

(SELECT p.deptnum
FROM projects p

where status=“active”)) SELECT count(*)
FROM active _employee dl

26 © 2019 IBM Corporation

Thank you!

