
1 © 2019 IBM Corporation

Advanced SQL Set
Processing

Rob Bestgen
Db2 for i Consultant

bestgen@us.ibm.com

Omni
Oct

20
19

2 © 2019 IBM Corporation

Thinking in Sets

A carefully crafted SELECT statement is basically a
contract between you and the database

You are precisely describing the inputs and the contents
and format of the result set

 It is up to the database to choose the most efficient way of
providing your result set

Traditional languages using Record Level Access (RLA)
are very row based in their approach

SQL works best when you think in terms of sets
Omni

Oct
20

19

3 © 2019 IBM Corporation

Question: number of customers in China?

CustomersLocations

Question: who are the customers in China?

Count what’s here

Return what’s here

SQL – Working with Sets

Omni
Oct

20
19

4 © 2019 IBM Corporation

T1 T2 T3 T4

HLL PGM or Interface

DB2

Results

Data Centric Overview – Leveraging the Database

Omni
Oct

20
19

5 © 2019 IBM Corporation

Omni
Oct

20
19

6 © 2019 IBM Corporation

DECLARE CURSOR cursor1 FOR
SELECT cust_id, prod_id, quantity, amount
FROM orders
WHERE transaction_date = :v_date;

OPEN cursor1;

DO
FETCH cursor1
INTO :v_custid, :v_prodid, :v_qty, :v_amt;

SELECT cust_name, cust_address
INTO :v_name, :v_address
FROM customers
WHERE custid= :v_custid;

SELECT prod_name INTO :v_prodname
FROM products
WHERE prodid= :v_prodid;

INSERT INTO daily_thank_you_log VALUES
(:v_name, :v_address, :v_prodname, :v_qty, :v_amt);

UNTIL (no more data);

CLOSE cursor1;

A working, procedural based program

Omni
Oct

20
19

7 © 2019 IBM Corporation

DECLARE CURSOR cursor1 FOR
SELECT cust_id, prod_id, quantity, amount
FROM orders
WHERE transaction_date = :v_date;

OPEN cursor1;

DO
FETCH cursor1
INTO :v_custid, :v_prodid, :v_qty, :v_amt;

SELECT cust_name, cust_address
INTO :v_name, :v_address
FROM customers
WHERE custid= :v_custid;

SELECT prod_name INTO :v_prodname
FROM products
WHERE prodid= :v_prodid;

INSERT INTO daily_thank_you_log VALUES
(:v_name, :v_address, :v_prodname, :v_qty, :v_amt);

UNTIL (no more data);

CLOSE cursor1;

Our ‘program’ revisited

INSERT INTO daily_thank_you_log
SELECT c.cust_name, c.cust_address,

p.prod_name,
o.quantity, o.amount

FROM orders o
INNER JOIN customers c

ON c.custid= o.cust_id
INNER JOIN products p

ON p.prodid = o.prod_id
WHERE o.transaction_date = :v_date

Much
better!!

Omni
Oct

20
19

8 © 2019 IBM Corporation

Omni
Oct

20
19

9 © 2019 IBM Corporation

SQL is commonly used in the single SELECT form
• SELECT … FROM… WHERE

And it is very powerful
• Can do join, filtering, projection….

But SQL becomes even more powerful when
combining more than one SELECT
• Can leverage more set thinking!

Omni
Oct

20
19

10 © 2019 IBM Corporation

Set Operators

Use Set operators to combine results from multiple subselects
 UNION – combine into a distinct result set
 UNION ALL – append result sets
 INTERSECT – return only distinct rows found in both result sets
 EXCEPT – return distinct rows from first subselect not found in second

subselect

Examples:
– Return all (distinct) rows that are in t1, but not t2

(SELECT cusnum FROM orders2018)
EXCEPT

(SELECT cusnum FROM orders2019)

– All (distinct) rows that exist in both t1 & t2
(SELECT cusnum FROM orders2018)
INTERSECT

(SELECT cusnum FROM orders2019)

Omni
Oct

20
19

11 © 2019 IBM Corporation

Subselects

Subselect, as the name implies, is a:
1. SELECT statement
2. within (‘sub’) an SQL statement

Subselects are the underpinning for many advanced SQL
techniques

Strong suggestion:
Qualify your column references!Omni

Oct
20

19

12 © 2019 IBM Corporation

Subselects can be independent or dependent

 Independent – aka non-Correlated
– Subselect (along with any of its inner components) is autonomous
– Example:
SELECT e.last_name FROM employee e
WHERE deptnum IN

(SELECT l.deptno FROM location l WHERE l.name = ‘Indy’)

 Dependent – aka Correlated
– Dependent on outer row for evaluation because of a reference
– Example:
SELECT last_name FROM employee x
WHERE x.salary >

(SELECT AVG(y.salary) FROM employee y
WHERE x.deptnum = y.deptnum)

Subselect dependence

Omni
Oct

20
19

13 © 2019 IBM Corporation

SELECT C.CUSTNAME, O.ORDERDATE, I.ITEMNAME, O.QUANTITY
FROM ORDERS O

INNER JOIN CUSTOMER C ON O.CUSTNO = C.CUSTNO
INNER JOIN ITEMS I ON O.ITEMNUM = I.ITEMNUM

WHERE O.ORDERDATE =
(SELECT MAX(O2.ORDERDATE)
FROM ORDERS O2
WHERE O.CUSTNO = O2.CUSTNO)

Subquery example:

Return the details of the latest order for each of my customers

Omni
Oct

20
19

14 © 2019 IBM Corporation

SELECT contact_name, contact_phone FROM contact o
WHERE (o.contact_state, o.contact_id) IN (

SELECT c.state, c.custid FROM customer c)

Row subquery

BTW, you can compare more than a single
column with an IN subquery:

Omni
Oct

20
19

15 © 2019 IBM Corporation

Derived Tables
Common Table Expressions

Views

Omni
Oct

20
19

16 © 2019 IBM Corporation

But First, some VALUES

VALUES –
 A table-less result set. A way to produce an answer set out of thin air

 You’ve probably used it in INSERT statements
INSERT INTO mytab VALUES(1,2,3)

 But it can also be used as a source of data in most any query
SELECT * FROM TABLE(VALUES(1,2,3)) X(C1, C2, C3)

 Including multiple rows
SELECT * FROM TABLE(VALUES(1,2,3),(4,5,6)) X(C1, C2, C3)

It can be a very handy tool in the toolbox
Omni

Oct
20

19

17 © 2019 IBM Corporation

Derived Tables

Derived Tables are subselects embedded in a FROM clause
that produce a set of rows

– A virtual table

SELECT e.name as mgrname, d1.deptno as dept,
d1.empcount as numemployees

FROM employees e inner join
(SELECT deptno, COUNT(*) as empcount
FROM employee GROUP BY deptno) d1

ON e.deptno = d1.deptnoOmni
Oct

20
19

18 © 2019 IBM Corporation

Derived Tables…

A Derived Table can be laterally correlated*
– Its results are dependent on a table to the ‘left’
– Must use the LATERAL keyword
– Good way to ‘pivot’ multiple columns into rows

SELECT A.NAME, A.APP_NBR,
L.PROPERTY_ASPECT , L.SCORE

FROM HOME_LOAN_APPS A CROSS JOIN
LATERAL
(SELECT

PROPERTY_ASPECT, SCORE
FROM TABLE
(VALUES

(‘Location', A.LOC),
(‘Structures' , A.STRCTR),
(‘Age Of Buildings', A.AGE)

) E(PROPERTY_ASPECT,SCORE)
) L

* Can be used with inner, left outer joins, left exception, and cross joins

CREATE TABLE HOME_LOAN_APPS
(NAME VARCHAR(128),
APP_NBR INT,
LOC CHAR(5),

STRCTR CHAR(5),
AGE CHAR(5));

Omni
Oct

20
19

19 © 2019 IBM Corporation

Common Table Expressions (CTEs)

Common Table Expressions (CTEs) produce a result set
 Virtual temporary table – avoid physical work tables
 Can be referenced multiple times
 Divides a report into logical steps
 Can be used to perform Recursive SQL!

WITH staff (deptno, empcount) AS
(SELECT deptno, COUNT(*) FROM employee
WHERE division = :div_var GROUP BY deptno)

SELECT deptno, empcount FROM staff
WHERE empcount >

(SELECT AVG(empcount) FROM staff)

Omni
Oct

20
19

20 © 2019 IBM Corporation

CTEs – Thinking in Sets …
• What if you want a list of customers who were in the “top 10” for two

consecutive years? Think in sets …

WITH top10_2017 (customer_name, total_sales) AS
(SELECT customer_name, SUM(sales) FROM sales

WHERE year=2017
GROUP BY customer_name
ORDER BY SUM(sales) DESC
FETCH FIRST 10 ROWS ONLY) ,

top10_2018 AS
(SELECT customer_name, SUM(sales) total_sales FROM sales

WHERE year=2018
GROUP BY customer_name
ORDER BY SUM(sales) DESC
FETCH FIRST 10 ROWS ONLY)

SELECT y1.customer_name,
y1.total_sales AS sales2017, y2.total_sales AS sales2018
FROM top10_2017 y1 INNER JOIN top10_2018 y2
ON y1.customer_name = y2.customer_name

Which
column
naming

approach is
better?

Omni
Oct

20
19

21 © 2019 IBM Corporation

CTEs: Recursive (Hierarchical) SQL

Perform a Recursive Query with CTEs!

 Useful for navigating tables where rows are inherently related to other rows in same table
– Bill of Materials, Organizational Hierarchies, etc…

WITH emp_list (level, empid, name) AS
(SELECT 1, empid, name FROM emp

WHERE name = 'Carfino‘
UNION ALL

SELECT o.level + 1, next_layer.empid, next_layer.name
FROM emp as next_layer, emp_list o

WHERE o.empid = next_layer.mgrid)
SELECT level, name FROM emp_list

1 - Initializing the query

2 – Recursive reference
to the next level

3 – Start the query &
return final results

Omni
Oct

20
19

22 © 2019 IBM Corporation

Recursive SQL simple case alternative
- CONNECT BY

WITH emp_list (level, empid, name) AS
SELECT 1, empid, name FROM emp

WHERE name = 'Carfino‘
UNION ALL

SELECT o.level+1, next_layer.empid, next_layer.name
FROM emp as next_layer, emp_list o
WHERE o.empid = next_layer.mgrid)

SELECT level, name FROM emp_list

Olson

CarfinoLester

Davis Payne

Lohaus
Brookins

Horton

Bullard
Settles

…SELECT LEVEL, name
FROM emp

START WITH name = 'Carfino'
CONNECT BY mgrid = PRIOR empid

Omni
Oct

20
19

23 © 2019 IBM Corporation

CTEs: Recursive SQL – Hierarchical SQL

RCTE vs. CONNECT BY. Which is better?

Both have advantages:

 RCTE – More complex definitions allowed
 CONNECT BY – more options to control circular loops and depth

Use the one that ‘speaks’ to you.

Omni
Oct

20
19

24 © 2019 IBM Corporation

CTEs: Recursive SQL

How about generating sales info for each day of this month

WITH month_days (d, DayOfMonth) AS
(VALUES(CURRENT DATE – (DAY(CURRENT DATE) – 1) DAYS, 1)

UNION ALL
SELECT d+1 DAYS, DAY(d+1 DAYS) FROM month_days
WHERE MONTH(d+1 DAYS) = MONTH(CURRENT DATE)

)
SELECT s.order_date, sum(s.sales) as totsales
FROM sales s INNER JOIN month_days m
ON s.order_date = m.d Omni

Oct
20

19

25 © 2019 IBM Corporation

Logical Separation
Using Views

Omni
Oct

20
19

26 © 2019 IBM Corporation

Remember to Use SQL Views

An SQL view provides many advantages

 Encapsulate common ‘patterns’ in queries into a single location

 SQL views provide a way to logically separate the application from the
physical database layout

 Views are performance neutral. They neither hurt (nor help) performance.
The optimizer merges the view definition with the query

CREATE VIEW active_employee AS
(SELECT d1.* FROM employee d1
WHERE d1.deptno IN
(SELECT p.deptnum
FROM projects p
where status=‘active’))

.

SELECT *
FROM active_employee d1
WHERE d1.empid = ?
.
.
.

SELECT count(*)
FROM active_employee d1

Omni
Oct

20
19

27 © 2019 IBM Corporation

Thank you!

Omni
Oct

20
19

