
© 2019 IBM Corporation

How to Write SQL
Stored Procedures

Rob Bestgen
Db2 for i Consultant

bestgen@us.ibm.com

Omni
Oct

20
19

© 2019 IBM Corporation2

SQL as a development language

SQL is a well established, standardized language for database access

SQL is also a programming language

 SQL/PSM (https://en.wikipedia.org/wiki/SQL/PSM) is a full procedural
programming language

– Silly quiz: what does PSM stand for?

 PSM enhances portability
– Supported across Db2 Family
– Similar to proprietary DBMS procedure languages (PL/SQL, T-SQL, etc…)

Makes it easier for SQL programmers to be productive faster on IBM iOmni
Oct

20
19

© 2019 IBM Corporation3

SQL Procedures

 A procedure is SQL’s version of a program

 Similar to any other high-level language program

 Invoked with a CALL statement

 Supports parameters, both input and output
– and Result Sets!

 Allows natural interaction between logic programming and
database access in a single (SQL) languageOmni

Oct
20

19

© 2019 IBM Corporation4

1 Create it (one time, like a pgm)

CREATE OR REPLACE PROCEDURE total_val (IN Member# CHAR(6),
OUT total DECIMAL(12,2))

LANGUAGE SQL
BEGIN

CALL refresh_accounts;
SELECT SUM(curr_balance) INTO total

FROM accounts
WHERE account_owner=Member# AND

account_type IN ('C','S','M');
END

2 CALL it (many times) from an SQL interface
CALL total_val(‘135790’, balance_var)

Procedure

Omni
Oct

20
19

© 2019 IBM Corporation5

Why use SQL procedures?

 Combines application logic with data access
– One language, natural interaction

 Encapsulate complex logic

 Can leverage security control using owner adoption

 Provide underpinning behind service interfaces (like REST, microservices)

 Reduce data movement (network traffic)

 Enables (batch) programmatic processing of SQL

 Error handling/recovery for data access

Omni
Oct

20
19

© 2019 IBM Corporation6

 Encapsulate complex logic into a single service
 Reduce traffic flow

– One request initiates multiple transactions and processes

 Further enhance data flow and reduce work files by returning result sets

Stored Procedure to encapsulate

DB2 for
AS/400
DB2 for i

R
e
q
u
e
s
t
o
r

DB2 for i

R
e
q
u
e
s
t
o
r

SP

Omni
Oct

20
19

© 2019 IBM Corporation7

General SQL Procedure layout

Declarations

CREATE PROCEDURE(parms…)
LANGUAGE SQL
<create options>
BEGIN

<declare variables>
<declare conditions>
<declare cursors>
<declare handlers>

<program logic >
END

Logic -
Can contain nested
compound statements

Compound
Statement

Omni
Oct

20
19

© 2019 IBM Corporation8

Basic Procedure (Language) Constructs
 DECLARE – define variables. Variables automatically initialized when procedure is called

 SET – assign a value to a variable or parameter

 SET OPTION – ‘compile’ options

 Comments - either /* */ or --

 Logic statements
– IF THEN ELSE END IF
– CASE

 Looping constructs
– FOR
– LOOP
– REPEAT
– WHILE

 Error handling and feedback
– CONDITIONs and HANDLERs
– GET DIAGNOSTICS
– SIGNAL and RESIGNAL
– RETURN

 Result Sets
Omni

Oct
20

19

© 2019 IBM Corporation9

SQL Procedure example
create or replace procedure exitcheck(out totalcount int)
language sql modifies sql data
begin

declare pgmcount int default 0;
declare exc_occurred int default 0;
declare continue handler for sqlexception set exc_occurred = 1;

set totalcount = 0; /* assume the best */
Loop1: for Loop1 as c1 cursor for
with exitlist (entry) as (
values('QIBM_QDB_OPEN'),('QIBM_QSQ_CLI_CONNECT'))
select entry from exitlist

do
if exc_occurred = 1 then leave Loop1; end if;
set pgmcount = 0;
call regcount(Loop1.entry,pgmcount);
if pgmcount > 0 then

set totalcount = totalcount + pgmcount;
end if;

end for;
if exc_occurred = 1 then

set totalcount = -1;
end if;

end; /* exitcheck */

Omni
Oct

20
19

© 2019 IBM Corporation10

Techniques to Consider

Omni
Oct

20
19

© 2019 IBM Corporation11

Parameter passing options

Leverage default parameters to lessen the number of procedures needed

Example:
create or replace procedure trimfile

(thelib char(10),
trimdate date default (current date - 1 year))

language sql
begin

declare d_sql varchar(3000);
…
set d_sql = ‘delete from ‘ concat thelib concat ‘.orders where order_date < ?’;
prepare stmt1 from d_sql;
execute stmt1 using trimdate;

end;

Invoke as:
call trimfile(‘mylib’,’10/01/2019’)

or
call trimfile(‘mylib’);

Omni
Oct

20
19

© 2019 IBM Corporation12

Controlling procedure name
Procedures can have long, meaningful SQL names
 There can also be multiple procedures with the same (long) name in the

same library, with different number of parameters

 Control corresponding pgm/srvpgm object name to help organize objects
– Use SPECIFIC

Example (assuming the procedures do different things):
create or replace procedure my_meaningful_proc_name()
language sql
SPECIFIC MYPROC0 /* control name of object in IBM i library */
…

create or replace procedure my_meaningful_proc_name(parm1 int)
language sql
SPECIFIC MYPROC1 /* control name of object in IBM i library */
…

Omni
Oct

20
19

© 2019 IBM Corporation13

Mixing static and dynamic
Using dynamic SQL within SQL procedures is very powerful
 Build statements based on input and environment situations
 Take advantage of dynamic’s ‘late binding’

Static – Things you know about during the procedure creation

Dynamic – to handle things that can vary

Use prepare/execute and execute immediate to drive dynamic

create or replace procedure trimfile(thelib char(10), trimdate date) language sql
begin

declare d_sql varchar(3000);
…
Set d_sql = ‘delete from ‘ concat thelib concat ‘.orders where order_date < ?’;
prepare stmt1 from d_sql;
execute stmt1 using trimdate;

end;

Omni
Oct

20
19

© 2019 IBM Corporation14

Control compile - SET OPTION
The SET OPTION controls how the procedure is created. Common options:

 Compile for debugging
CREATE OR REPLACE PROCEDURE MYPROC(…)
LANGUAGE SQL SET OPTION DBGVIEW = *STMT

Note: alternative is to use the ALLOW DEBUG MODE clause

 Commitment control level
– Specify lowest commit level to accomplish what you need

SET OPTION COMMIT = *NC

 Target release
– Specify target release to help ensure program can run at the earliest

necessary release.
– Note this does not ensure dynamic SQL will run at that release!

SET OPTION TGTRLS = V7R1M0
Omni

Oct
20

19

© 2019 IBM Corporation15

CONTAINS SQL

MODIFIES SQL DATA

NO SQL
READS SQL DATA

Create Option – Data access allowed

 MODIFIES SQL DATA – Most any SQL statement allowed
 READS SQL DATA – Read Only statements
 CONTAINS SQL – Simple local statements (SET, DECLARE)
 NO SQL – No SQL allowed (external procedures only)

Note: Create routine at the ‘lowest’ option possible for your situation
– Lowest to highest: NO, CONTAINS, READS, MODIFIESOmni

Oct
20

19

© 2019 IBM Corporation16

DETERMINISTIC

NOT DETERMINISTIC

Create Options

 DETERMINISTIC
– procedure/function will always return the same result from successive calls with

identical input arguments
– Best performing option, but make sure it is true!

MAIN

SUB
PROGRAM TYPE

 PROGRAM TYPE
– SUB: creates a service program object (better performance)
– MAIN: creates a program object

Omni
Oct

20
19

© 2019 IBM Corporation17

Looping Constructs

For the most part, which looping construct to use is a developer’s choice
– LOOP
– WHILE
– REPEAT

The FOR is a unique solution when processing the rows of a cursor result
 Saves steps of defining a separate cursor and variables
 Allows columns in SELECT statement to be accessed directly!
 Cursor can be used in WHERE CURRENT OF... operation
 Main disadvantage is that the table(s) must be known at create procedure time

Ex:
FOR loopvar AS loopcursor CURSOR FOR

SELECT firstname, middinit, lastname FROM emptbl
DO

SET fullname=lastname||', ' || firstname||' ' || middinit;
INSERT INTO namestbl VALUES(fullname);

END FOR;
Omni

Oct
20

19

© 2019 IBM Corporation18

Leverage DB2 for IBM i services
IBM i services are a great SQL way to get system related information
 Natural integration into an SQL procedure

create or replace procedure myproc(…)
language sql
begin

declare exc_occurred int default 0;
declare host_name varchar(257);
declare server_ipaddr varchar(45);
declare vrm varchar(10);
declare continue handler for sqlexception set exc_occurred = 1;
…
set (host_name,vrm, server_ipaddr) =

(select local_host_name, host_version, server_ip_address
from qsys2.tcpip_info);

if vrm = 'V7R1M0' then /* special case to handle i7.1 */
…

end if;
end;

http://ibm.biz/DB2foriServices
Omni

Oct
20

19

© 2019 IBM Corporation

Db2 for IBM i Services
 Complete listing found on IBM i developerWorks: https://ibm.biz/Db2Services

 Service objects found in QSYS2, unless otherwise noted

19

Omni
Oct

20
19

© 2019 IBM Corporation20

Use global variables

Global variables provide several advantages
 communicate across procedures
 define ‘configuration’ or default values
 ‘catch’ OUTput procedure parameters for testing

Example. Use global variable mylib.verbose to control whether to dump out trace
information

create or replace procedure myproc(…)
language sql
begin

declare exc_occurred int default 0;
… handlers here for expected errors…
…
if mylib.verbose = 1 then

… dump out trace type information here to aid debugging
end if;

end;
Omni

Oct
20

19

© 2019 IBM Corporation21

Calling out

It is sometimes necessary to do a call outside of SQL
 Leverage an OS command
 Get information from outside SQL

QSYS2.QCMDEXC is a good way to do these ‘outside’ calls

create or replace procedure myproc(…)
language sql
begin

…
CALL QSYS2.QCMDEXC(

'QSYS/SBMJOB CMD(QSYS/RUNSQL SQL(‘’CALL QGPL.DOSOMETHING()'') ‘
CONCAT ‘ COMMIT(*NONE) NAMING(*SQL))'); /* submit job to do work */

CALL QSYS2.QCMDEXC(‘QSYS/DLYJOB DLY(5)’); /* wait for job to get going… */
…

end;
Omni

Oct
20

19

© 2019 IBM Corporation22

Speaking of CL interaction
 Interaction between native (CL) and SQL is limited when SQL is driving things

– Errors tend to be generic SQL0443 message
– often not an issue if simple error handling is sufficient

 If detailed handling is important, you could write your own wrapper to invoke CL
– Or use an SQL Service against the joblog messages

Example:
create or replace procedure myproc() language sql
begin
declare underlying_error char(7);
declare exc_occurred int default 0;
declare continue handler for sqlexception set exc_occurred = 1;
CALL QSYS2.QCMDEXC(‘QSYS/SBMJOB …’) /* submit job to do work */
if exc_occurred = 1 then

set underlying_error = (select message_id from
table(QSYS2.JOBLOG_INFO('*')) x

where ordinal_position = (
select max(ordinal_position) - 2
from table(QSYS2.JOBLOG_INFO('*')) x
where message_id = 'SQL0443')

-- do some acknowledgement of the error….
end if;
end;

Omni
Oct

20
19

© 2019 IBM Corporation23

Running with elevated authority
In some cases it is advantageous to run a procedure with elevated authority
 when invoked, procedure runs under a higher (pgm owner’s) authority

Authority to call procedure is usually restricted

Note: adopted authority does not work for IFS files

Use SET statement with USRPRF option:

CREATE OR REPLACE PROCEDURE myproc(…)
LANGUAGE SQL
SET OPTION DYNUSRPRF = *OWNER, USRPRF = *OWNEROmni

Oct
20

19

© 2019 IBM Corporation24

Feedback and Error Handling

Procedures can leverage a rich set of error and message handling
capabilities

 GET DIAGNOSTICS
 SQLSTATE and SQLCODE variables
 CONDITIONs and HANDLERs
 SIGNAL and RESIGNAL
 RETURN statement

Omni
Oct

20
19

© 2019 IBM Corporation25

Feedback & Error Handling

 GET DIAGNOSTICS
– Retrieve information about last statement executed

• Row_count, return_status, error status….
– CURRENT or STACKED

• CURRENT – statement that was just executed
• STACKED – statement before error handler was entered

– Only allowed within error handler

Example:

DECLARE update_counter INTEGER;
...

UPDATE orders SET status=‘LATE’
WHERE ship_date < CURRENT DATE;

GET DIAGNOSTICS update_counter = ROW_COUNT;
...

Omni
Oct

20
19

© 2019 IBM Corporation26

Error handling

Every non-trivial procedure, practically speaking, needs error handling
 DECLARE … HANDLER FOR…

Get use to having a handler in your ‘template’ procedure to encourage usage
 Use CONDITIONs to convey meaning for cryptic SQLSTATE

create or replace procedure myproc(…)
language sql
begin

declare already_exists int default 0;
declare alreadyexists condition for '42710';
declare dupekey condition for '23505';
declare continue handler for alreadyexists set already_exists=1;
declare continue handler for dupekey set already_exists=1;
…

end;

Omni
Oct

20
19

© 2019 IBM Corporation27

General exception handler

It is often useful to have a general exception handler to catch any
unexpected errors so as to allow the procedure to finish gracefully

SQL provides a built-in condition called SQLEXCEPTION
create or replace procedure myproc(…)
language sql
begin

declare exc_occurred int default 0;
… other handlers here for expected errors…
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET exc_occurred = 1;
…
IF exc_occurred = 1 then

-- do some acknowledgement of the error….
END IF;

end;

Omni
Oct

20
19

© 2019 IBM Corporation28

Returning result sets
Result sets are a unique capability for procedures
 allow an answer set(s) to be returned from the CALL
 Consolidate complex processing for determining an answer set under one CALL
 Communicate much more information back than just a reason code

Example:
create or replace stop_processing()
dynamic result sets 1 language sql modifies sql data

begin
declare status varchar(50);
declare total_job_count, job_count int default 0;

declare cursor1 cursor with return for
with cte("status", "jobs found", "jobs ended") as
(values(status, total_job_count, job_count))
select * from cte;

call killjobs(total_job_count, job_count); /* find and kill jobs */
set status = case when total_job_count = 0 then 'no jobs found'

when total_job_count > job_count then 'not all jobs ended'
else 'success. All jobs ended‘ end;

open cursor1 ; -- cursor left open for client application
end;

Omni
Oct

20
19

© 2019 IBM Corporation29

Constructing a result set
Result sets are a good way to return (conditional) data as a service
Example: return a list of vehicles from optional input filters

create or replace procedure get_car_list
(in g_make varchar(20) default ‘’
, in g_model varchar(20) default '', in g_year int default 0)
dynamic result sets 1 language sql modifies sql data

begin
declare d_sql varchar(1000);
declare w_clause varchar(500) default ' where';
declare have_where int default 0;
declare cursor1 cursor with return for statement1;

if g_make <> '' then
set w_clause = w_clause concat ' make = ?';
set have_where = 1;

else
set w_clause = w_clause concat ' '''' = ?';
set g_make = ''; /* make sure not null */

end if;
if g_model <> '' then

set w_clause = w_clause concat ' and model = ?';
set have_where = 1;

else
set w_clause = w_clause concat ' and '''' = ?';
set g_model = ''; /* make sure not null */

end if;

if g_year > 0 then
set w_clause = w_clause concat ' and year >= ?';
set have_where = 1;

else
set w_clause = w_clause concat ' and 0 = ?';
set g_year = 0; /* make sure not null */

end if;

set d_sql =
'SELECT make, model, year, color, style FROM vehicles'

concat case when have_where <> 0 then w_clause
else '' end;

prepare statement1 from d_sql;
/* open cursor can have 'extra' variables */
open cursor1 using g_make, g_model, g_year;
-- cursor left open for client application
end;

Omni
Oct

20
19

© 2019 IBM Corporation30

Proc n

Proc 1

.

.

.

Proc n-1

Proc n

Proc n-1

Proc 1

.

.

.RETURN
TO

CLIENT

RETURN
TO

CALLER

Result Set Considerations
Result Set Consumer Control
 RETURN TO CLIENT

Ex: DECLARE c1 CURSOR WITH RETURN TO CLIENT FOR SELECT * FROM t1

 RETURN TO CALLER

Ex: DECLARE c1 CURSOR WITH RETURN TO CALLER FOR SELECT * FROM t1

Omni
Oct

20
19

© 2019 IBM Corporation31

Result Set Consumption

 Consume result sets from one procedure inside another
– ASSOCIATE LOCATOR & ALLOCATE CURSOR statements

…
DECLARE sprs1 RESULT_SET_LOCATOR VARYING;
CALL GetProjs(projdept);
ASSOCIATE LOCATOR (sprs1) WITH PROCEDURE GetProjs;
ALLOCATE mycur CURSOR FOR RESULT SET sprs1;
SET totstaff=0;
myloop: LOOP

FETCH mycur INTO prname, prstaff;

IF row_not_found=1 THEN
LEAVE fetch_loop;

END IF;
SET totstaff= totstaff + prstaff;
IF prstaff > moststaff THEN

SET bigproj = prname;
SET moststaff= prstaff;

END IF;
END LOOP;
CLOSE mycur;
…

Consume
Result Set!

** DESCRIBE PROCEDURE &
DESCRIBE CURSOR statements
can be used to dynamically
determine the number and
contents of a result set

Omni
Oct

20
19

© 2019 IBM Corporation32

More Information

Omni
Oct

20
19

© 2019 IBM Corporation33

The Full Story

RedBook available

http://www.redbooks.ibm.com/redpieces/abstracts/sg248326.html

Omni
Oct

20
19

© 2019 IBM Corporation34

Additional Information
 DB2 for i Websites

– Homepage: www.ibm.com/systems/power/software/i
– Technology Updates

www.ibm.com/developerworks/ibmi/techupdates/db2
– developerWorks Zone: www.ibm.com/developerworks/data/products.html

 Forums
– developerWorks:

https://ibm.com/developerworks/forums/forum.jspa?forumID=292

 Articles on procedure resolution related to default parameters
– http://www.ibm.com/developerworks/ibmi/library/i-sqlnaming/index.html
– http://www.ibm.com/developerworks/ibmi/library/i-system_sql2/index.htmlOmni

Oct
20

19

© 2019 IBM Corporation35

• Customized consulting, education, architecture and design
reviews

• Advanced SQL and Datacentric Programming

• SQL Performance Best Practices, Monitoring and Tuning

• RCAC

• …

• Consulting on any Db2 for i topic!

For more information, contact mackd@us.ibm.com
Omni

Oct
20

19

© 2019 IBM Corporation36

Thank you!

Omni
Oct

20
19

© 2019 IBM Corporation

Special notices
This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available
in other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM
offerings available in your area.
Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk,
NY 10504-1785 USA.
All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives
only.
The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or
guarantees either expressed or implied.
All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the
results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client
configurations and conditions.
IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions
worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment
type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal
without notice.
IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.
All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are
dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in
this document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-
available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document
should verify the applicable data for their specific environment.

Revised September 26, 2006

Omni
Oct

20
19

© 2019 IBM Corporation

IBM, the IBM logo, ibm.com AIX, AIX (logo), AIX 5L, AIX 6 (logo), AS/400, BladeCenter, Blue Gene, ClusterProven, DB2, ESCON, i5/OS, i5/OS (logo), IBM
Business Partner (logo), IntelliStation, LoadLeveler, Lotus, Lotus Notes, Notes, Operating System/400, OS/400, PartnerLink, PartnerWorld, PowerPC, pSeries,
Rational, RISC System/6000, RS/6000, THINK, Tivoli, Tivoli (logo), Tivoli Management Environment, WebSphere, xSeries, z/OS, zSeries, Active Memory, Balanced
Warehouse, CacheFlow, Cool Blue, IBM Systems Director VMControl, pureScale, TurboCore, Chiphopper, Cloudscape, DB2 Universal Database, DS4000, DS6000,
DS8000, EnergyScale, Enterprise Workload Manager, General Parallel File System, , GPFS, HACMP, HACMP/6000, HASM, IBM Systems Director Active Energy
Manager, iSeries, Micro-Partitioning, POWER, PowerExecutive, PowerVM, PowerVM (logo), PowerHA, Power Architecture, Power Everywhere, Power Family,
POWER Hypervisor, Power Systems, Power Systems (logo), Power Systems Software, Power Systems Software (logo), POWER2, POWER3, POWER4,
POWER4+, POWER5, POWER5+, POWER6, POWER6+, POWER7, System i, System p, System p5, System Storage, System z, TME 10, Workload Partitions
Manager and X-Architecture are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S.
registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks
in other countries.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.
AltiVec is a trademark of Freescale Semiconductor, Inc.
AMD Opteron is a trademark of Advanced Micro Devices, Inc.
InfiniBand, InfiniBand Trade Association and the InfiniBand design marks are trademarks and/or service marks of the InfiniBand Trade Association.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government
Commerce.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.
Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.
Microsoft, Windows and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries or both.
NetBench is a registered trademark of Ziff Davis Media in the United States, other countries or both.
SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and SPECsfs are
trademarks of the Standard Performance Evaluation Corp (SPEC).
The Power Architecture and Power.org wordmarks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.
TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).
UNIX is a registered trademark of The Open Group in the United States, other countries or both.

Other company, product and service names may be trademarks or service marks of others.

Special notices (cont.)

Revised December 2, 2010

Omni
Oct

20
19

