
OO and Ahh!
An Introduction to Object Oriented Programming With PHP

John Valance
division 1 systems

johnv@div1sys.com

© 2015 John Valance

OO and Ahh! Object Oriented PHP <div1>

About John Valance

 Independent Consultant
 Founder and CTO of Division 1 Systems (div1sys.com)
 Specialty is helping IBM shops develop web applications and

related skills
 Training, mentoring, project management, consultation and

coding
 30+ years IBM midrange experience (S/38 thru IBM i)
 13+ years of web development experience

 Web scripting language of choice = PHP
 Frequent presenter on web development topics
 Trainer for Zend Technologies

 Teaches Intro to PHP for RPG programmers
 Zend Certified Engineer

OO and Ahh! Object Oriented PHP <div1>

Goals and Topics of This Presentation

 Goals:
 Introduce Object Oriented programming concepts and

basic OO syntax for PHP
 Focus on basics – avoid advanced OO concepts

 Topics:
 Review of PHP functions – concepts and syntax
 Basic concepts, keywords and syntax

• Defining classes and instantiating objects
 Examples

• Person class
• HTML form input class

OO and Ahh! Object Oriented PHP <div1>

Assumptions

 You:
 Understand basic PHP syntax
 Understand PHP functions
 Understand basics of web programming in PHP
 Some experience with HTML forms and PHP
 Interested in Object-Oriented PHP
 May have no prior experience with OO

• maybe you’ve tried it, but got lost or overwhelmed

OO and Ahh! Object Oriented PHP <div1>

Review of PHP Functions
 Functions have several important properties that set them

apart from RPG subroutines
 Parameters = input
 Return value = output
 Local variables i.e., scope

 Functions are defined with function keyword

OO and Ahh! Object Oriented PHP <div1>

Anatomy of formatDate() function

 Two parameters, passed by VALUE (i.e. copy)
 $format has default value (optional parameter)
 $dateString, $format, $dateVar, and
$fmtDate are all LOCAL variables
(i.e., not accesible outside formatDate function)

OO and Ahh! Object Oriented PHP <div1>

Functions are Reusable

 Function = Black-Box
 Pre-tested component
 Well-defined interface (API)
 Can be relied upon as building block

 Can create function libraries and include them in
multiple scripts
 Use require_once(‘func_lib.php’);

OO and Ahh! Object Oriented PHP <div1>

Why Objects?

Why not just use functions, and organize them into
libraries?
 Objects take the concepts of functions a step

further (a big step).
 Objects allow you to organize your functions into

groups that share a common set of data elements

Encapsulation:
 Data and Related Functions are tied together

OO and Ahh! Object Oriented PHP <div1>

What is a Class?

 A class is a template for creating objects
 Defines:

 a set of related data elements
 a set of functions that perform actions on this

data
 Data elements are called “Properties”

 these are PHP variables
 Actions are called “Methods”

 these are PHP functions

OO and Ahh! Object Oriented PHP <div1>

Person class

OO and Ahh! Object Oriented PHP <div1>

Defining a Class

 Use class keyword, followed by name of the class
 Body of class:

 curly braces { } enclose entire class definition
 Properties (variables)
 Methods (functions)

 Properties usually coded at top, before methods

class ClassName {
// properties…

// methods…
}

OO and Ahh! Object Oriented PHP <div1>

Class Names

 Class name should be a noun
 represents an object of some sort that we are

attempting to model

 Standard is to start with capital letter
 use mixed case or underscores to separate

multiple words in class name.

 Some examples of classes you might create:
 Customer, Order, Product, HTML_InputForm,

DB2_Connection, ErrorLog, etc.

OO and Ahh! Object Oriented PHP <div1>

Basic OO Design

 Anything that can be boiled down to
 a set of properties (variables)
 and actions (functions) that can be performed on the

properties
can be modeled as an object class.

 Typically code each class in a separate PHP file
 Use same name as class for file name: Person.php

 Include class def into applications
 use require_once() function

CREATING AN OO APPLICATION

Using Classes in Applications

OO and Ahh! Object Oriented PHP <div1>

Instantiating Objects

 Class definitions are just template
 by themselves won't accomplish anything or run any

code.
 Need to create an object instance to use them
 Use the “new” keyword, followed by Class name
 Assign this to an object variable

 Each object has its own set of properties

$bob = new Person;
$tom = new Person;

OO and Ahh! Object Oriented PHP <div1>

Person class again

OO and Ahh! Object Oriented PHP <div1>

Application using Person class

If your run this script in a browser, it will produce the following output:

OO and Ahh! Object Oriented PHP <div1>

Class vs. Object

 Similar to the relationship between a File Description
and a Record
 Class is like a DB File Layout

• Except a Class also defines functions that can act upon the data.

 Object is like a record in the file
• A single “instance” of the data

 DB anology ends there
 no database is involved
 objects are in memory while script executes

 Each object has its own set of variables
 Each object is an “instance” of the class

 Instantiation is done with the “new” keyword

OO and Ahh! Object Oriented PHP <div1>

Object Member Access: ->

 Properties and Methods are “Members” of
the class

 Access to object members done with “->”
 object member access operator
 aka, arrow operator

 Note: from outside the class definition, can
only access public members.

OO and Ahh! Object Oriented PHP <div1>

Using $this Within a Class

 From within class definition, accessing
properties and methods of the same class is
done using $this

 $this is a special object name
 can only be used inside class methods (not from

application code)
 refers the current instance of the class, based on

context in which method was called

OO and Ahh! Object Oriented PHP <div1>

Example of $this - In Context

 Application context ($tom object):

 Class context ($this object):

 When getFullName() called on $tom object,
$this refers to $tom’s data

OO and Ahh! Object Oriented PHP <div1>

Constructors

 When object instantiated, special method
called __construct() is called automatically
 2 underscores before construct in the name

 In OO languages, this is called a constructor
method.

 Performs object initialization tasks
 like RPG’s *INZSR subroutine

 Optional – don’t have to code __construct()

OO and Ahh! Object Oriented PHP <div1>

Constructor Example

 Constructor can be coded with parameters
 e.g., to set property values

OO and Ahh! Object Oriented PHP <div1>

Member Visibility: public vs. private

 Every class member (property/method) should
specify the "visibility"

 public visibility:
 member can be directly accessed from any context,

inside or outside the class definition
 private visibility:

 member can only be directly accessed from the
methods within the same

 Default (implicit) visibility is public
 but you should explicitly specify visibility for each

member

OO and Ahh! Object Oriented PHP <div1>

Person class – one more time

OO and Ahh! Object Oriented PHP <div1>

Getters and Setters

 Public properties are considered bad form
 If public, you can retrieve and modify values
 Public ties you to a specific implementation

 Best practice:
 make all properties private
 declare public getter and setter methods to access

properties

 Aka – “accessor” methods
 controls access to object data

OO and Ahh! Object Oriented PHP <div1>

Benefits of Accessor Methods
 Setters: Add filtering and error checking on values

before allowing data elements to be set.
 setFirstName() method could check for a maximum length
 throw an error if the value supplied for firstName will not

fit into a database field.
 Getters: Format data value for consumption by a

variety of applications before being retrieved.
 getFirstNameForWeb() could filter value using PHP’s

htmlentities() function, preventing XSS attacks.
 Can simulate read-only properties

 Property has public getter, but no public setter
 Abstracts the Interface from Implementation

 Changes to the implementation do not affect applications

Person Class – Private Properties

28

OO and Ahh! Object Oriented PHP <div1>

Error Handling in OO Code

 We don’t know in which context an object will be used
 In class, if error occurs, throw an Exception
 It will bubble up through call stack until caught
 Allows application code to handle error appropriately
 Uncaught exceptions will cause fatal error, and produce

ugly stack trace on web page.

OO and Ahh! Object Oriented PHP <div1>

Try / Catch Blocks
try {

// try block: i.e., code accessing

// objects which may throw exception

} catch (Exception $e) {

// catch block: i.e., code to execute

// if exception thrown in try block

}

personApp.php, revised:

OO and Ahh! Object Oriented PHP <div1>

Exception Class
http://www.php.net/manual/en/class.exception.php

 Exception is a PHP built-in class

 This instantiates an unreferenced object of type
Exception

 This receives the thrown Exception object, and assigns it
to a variable named $e

 We can now access the public members of the Exception
object via the variable $e

OO and Ahh! Object Oriented PHP <div1>

Example: Form_Input class
 Create a Class to:

 store the properties of an HTML form input field
 render the HTML for the <input> tag, in a variety of formats

 Properties:
 name (attribute of <input> tag)
 type (attribute of <input> tag)
 value (attribute of <input> tag)
 text label (to display next to the input field)
 output only? (boolean: true = protect input)

 Methods:
 constructor (parms: name - req’d.; type - optional, default=‘text’)
 setters/getters for private properties
 render (returns HTML <input> tag with all attributes)
 renderTableRow (returns an HTML <tr> with columns for label and <input>)

OO and Ahh! Object Oriented PHP <div1>

PHP code for Form_Input class

Form_Input class (cont’d.)

OO and Ahh! Object Oriented PHP <div1>

Application using Form_Input PHP

OO and Ahh! Object Oriented PHP <div1>

Application using Form_Input - HTML

OO and Ahh! Object Oriented PHP <div1>

Customer Input Form – Rendered in FF

OO and Ahh! Object Oriented PHP <div1>

IBM i Toolkit

• Toolkit has two components
• XML Service

• Created by IBM to provision IBM i resources for other
platform development

• Written in RPG, CL and DB2 stored procedures

• PHP classes that “wrap” payload of XML Service
• Built on an Object Oriented model of PHP
• Use of PHP objects does not require OO knowledge

(black box)

38

OO and Ahh! Object Oriented PHP <div1>

Using the IBM i Toolkit
 Need to include the source code (i.e., class definitions) for

the toolkit
 Two class files exist:

 ToolkitService.php
• Run CL commands
• Call IBM i programs (RPG, CL, etc. – any *PGM object)

 iToolkitService.php
• Access to native IBM i objects
• Spool files, Data queues, User spaces, System Values, Job Logs, Object

Lists
 Use require_once to access Toolkit Classes:

• require_once 'ToolkitService.php';
• require_once 'iToolkitService.php';

 Documentation is in the Zend Server for IBM i User Guide:
http://files.zend.com/help/Zend-Server-6-IBMi/zend-server.htm#php_toolkit_xml_service_functions.htm

39

OO and Ahh! Object Oriented PHP <div1>40

Running CL Commands from PHP
• Create the toolkit object using the singleton design pattern

• In ToolkitService class, the getInstance method returns an object
• Cannot use new ToolkitService with singleton class

OO and Ahh! Object Oriented PHP <div1>41

Examples:
CLInteractiveCommand() and ClCommandWithOutput()

 CLInteractiveCommand:

 CLCommandWithOutput:

| 41

SUMMARY...

Thanks for attending!

OO and Ahh! Object Oriented PHP <div1>

Summary

 OO = encapsulation of data and related functionality
 Class definitions

 templates for instantiating objects,
 each object has its own data space.

 Object Instantiation
 new keyword

 Object member access operator (->)
 $this : access internal members within a class
 Applications: bring class definitions in using

require_once()

OO and Ahh! Object Oriented PHP <div1>

Summary (cont’d.)

 Member visibility - public and private
 public is default
 private is better

 Getter and Setter methods
 control access to object’s data

 Constructor method (__construct)
 object initialization

 Exception handling,
 PHP's built-in class: Exception
 throw new Exception
 try / catch

OO and Ahh! Object Oriented PHP <div1>

More Information
 iPro Developer article on OO PHP

by John Valance:
 http://tinyurl.com/oophp-JV1
 April 2013 issue

 PHP.net:
 http://php.net/manual/en/language.oop5.php
 www.php.net/manual/en/class.exception.php

 Contact John Valance :
 johnv@div1sys.com
 802-355-4024
 http://www.div1sys.com

