
Marina Schwenk

Software Developer

About Me
 Software Developer/IBM i admin at Everbrite LLC,

Greenfield WI

 Member of the CAAC. (COMMON America’s Advisory
Counsel)

 2019 IBM fresh face

 VP of WMCPA

 COMMON Board Member

 Member of COMMON’s Young i Professionals (YiPS)
committee

Agenda
 Scenario

 How to start

 Service programs

 Unit testing

 Standards

 Bring it all together

 Final thoughts and take aways

Scenario
 Your monolithic program is over 30+ years old

 The code is unmanageable

 No one wants to own the program

 You don’t know where to begin.

How to start
 Document Business process

 Design

 Modernize

 Develop a plan

 Executive the plan.

Document Business Process
 Document current business processes

 Meet with different departments to confirm business
processes

 Document your findings.

Design
 Identify procedures that are needed

 Plan the procedures inputs and outputs

 Design the flow of how the procedures are going to be
used.

Develop a plan
 Decide your approach

 Plan the timeline

 Start the project

Modernize Code
 Remove redundancy

 Develop a clear plan on data retrieval that ensures long
term success

 Remove outdated code

Service Programs
 Service Program (*SRVPGM) can be viewed as a

collection of subroutines packaged together and
accessible to the outside world.

 Service programs can be thought of like classes, in the
open source world.

Service Programs
 Carrying out a routine function.

 External procedures that can be called from other
programs.

 You can add/change procedures as needed.

Service Programs
 Single code base.

 Easy to use and reuse.

 The ability to add to the service program without
recompiling programs that are using it.

Service Programs
Service programs required objects

*BND

*SRVPGM

Optional

*MOD

Service Programs
 Service programs required source

 Copy file _h

 RPGLE or SQLRPGLE source file.

 Binding source

Copy File
 **free

 dcl-pr getArTransactionId varChar(20);

 releaseNumber packed(7) const;

 releaseSequenceNumber packed(5) const;

 end-pr;

Service Program – Start
 **FREE

 ctl-opt bnddir('EVBLOG’ : 'TEXTUTILS');

 ctl-opt nomain;

Procedure
 dcl-proc getArTransactionId export;

 dcl-pi *n varChar(20);
 releaseNumber packed(7) const;
 releaseSequenceNumber packed(5) const;
 end-pi;

 dcl-c PROCEDURE_NAME 'getArTransactionId';

 dcl-s result varChar(20);
 dcl-s customerRelease char(20);
 dcl-s customerReleaseNull int(5);
 dcl-s projectId packed(7);
 dcl-s projectIdNull int(5);

 evblog_entering(RELEASE_APPNAME : psds.PROGRAM_NAME : PROCEDURE_NAME
 : 'releaseNumber=' + %char(releaseNumber) +
 ', releaseSequenceNumber=' + %char(releaseSequenceNumber));

 result = '';

 - Continue on next slide

Procedure continued
 exec sql
 select rh.cusrl, rx.prjid
 into :customerRelease:customerReleaseNull, :projectId:projectIdNull
 from rlshdr rh left join rlshdx rx
 on rh.rlsno = rx.rlsno and rh.rlssq = rx.rlssq
 where rh.rlsno = :releaseNumber
 and rh.rlssq = :releaseSequenceNumber;

 if (isSQLError(sqlstt));

 if (not isSQLRowNotFound(sqlstt));

 evblog_log(RELEASE_APPNAME
 : psds.PROGRAM_NAME
 : PROCEDURE_NAME
 : EVBLOG_WARNING
 : 'SQL Error'
 : getSQLStateMessage());

 endIf;
 Continue on Next slide

Procedure continued
 else;

 // information was returned

 if ((projectIdNull = SQL_NOT_NULL) and (projectId <> 0));
 result = 'P' + %char(projectId);
 elseIf (customerReleaseNull = SQL_NOT_NULL);
 result = %trim(customerRelease);
 endIf;

 endIf;

 evblog_exiting(RELEASE_APPNAME : psds.PROGRAM_NAME : PROCEDURE_NAME
 : result);

 return result;

 end-proc;

What is Unit Testing?
 Breaking apart your application and testing each part

 It’s a program that will call your production
program/procedure.

 Test its behavior and/or output.

 Separate pieces that gets tested before the final program
is completed.

Why Unit Test?
 Peace of mind.

 Good for program modification's.

 Good for defining what your program needs to do, before
you write the program.

 Test cases will build over time.

Why Unit Test?
 Improved Code.

 Validates existing behavior.

What is IBMiUnit?
 RPG open source unit testing framework

 Streamlines unit testing of RPGLE programs and
procedures

How to Use IBMiUnit
 Install IBMiUnit Library

 Create test program

 Write one or more tests

 Run the tests

Installation
 Go to https://github.com/MarinaSchwenk/IBMiUnit

 1st way…

 Download the REPO

 Run the Build file

 2nd way…

 Download the savf file to IFS

 Create library IBMiUnit

 Restore IBMiUnit library.

https://github.com/MarinaSchwenk/IBMiUnit

Dependencies
 OSSILE (Soon to be obsoleted)

 Go to https://github.com/OSSILE/OSSILE

 Download the repo

 Follow the build instructions listed on the project.

https://github.com/OSSILE/OSSILE

Create Test Program
 No parameters

 bndDir('IBMiUnit')

 /copy IBMiUnit/QRPGLESRC,IBMiUnit_H

 Main body of the program

 Call IBMiUnit_setupSuite() (one-time)

 Call IBMiUnit_addTestCase() (for each test case)

 Call IBMiUnit_teardownSuite() (one-time)

 return

IBMiUnit Initialization
 IBMiUnit_setupSuite()
 Initializes the IBMiUnit library to run tests in the program
 Parameters (all optional)

 Name for the test suite
 Address of sub-procedure to call before each test
 Address of sub-procedure to call after each test
 Address of sub-procedure to call once before any tests in the

program are called
 Address of sub-procedure to call once after all tests in the

program are completed

 Example
IBMiUnit_setupSuite('MathTests');

IBMiUnit Test Case
 IBMiUnit_addTestCase()

 Identifies or ‘links’ a test case into the suite

 Parameters (no return value)

 Address of a test case sub-procedure

 No parameters or return values

 Name of test case; optional but greatly helps you
understand the test output and find the problem

 Example

IBMiUnit_test(%pAddr(add_twoNumbers)

: 'add_twoNumbers');

IBMiUnit Test Suite
 IBMiUnit_addTestSuite()

 Adds a set of test cases (suite) to a parent set

 Not all test programs will use this

 Parameters

 Name of test program

 Library of test program

 Optional, defaults to *LIBL

 Example
IBMiUnit_addTestSuite('TEST_ACHAR');

IBMiUnit Teardown
 IBMiUnit_teardownSuite()

 Wraps up test suite

 No parameters

 Every IBMiUnit_setupSuite() needs a
corresponding IBMiUnit_teardownSuite()

 Example

IBMiUnit_teardownSuite();

Write a Test Case: Interface
 Sub-procedure without parameters or a return value

 Name the test case with the name of the sub-procedure

 Example

 Calling the sub-procedure with positive values

 Test case named multiply_twoPositives

 Other test case names: multiply_positiveByZero,
multiply_zeroByZero, multiply_twoNegatives, …

Write Test Case: Logic
 Call sub-procedure with test data

 Compare actual result with the expected result

 Trigger failure when they don’t (or do) match

Write Test Case: Failure Detection
 Always fail, i.e. you write the condition and call fail()

 Conditionally fail, or test for failure; many possibilities
 All start with assert

 Indicator tests
 On / Off

 Pointer tests
 Null / NotNull

 Variable tests / comparisons
 RPG doesn’t have overloading so next word is a type

 Char, Date (ISO), Float, Numeric, Time (ISO), Timestamp

 Character tests work on values up to a length of 250

 Numeric is used for non-float numbers; size is 60,25

Write Test Case: Test Procs
 fail()

 Message to display; optional

 assertOn(), assertOff(), assertNull(), assertNotNull()
 Actual value; required
 Message to display on failure; optional

 assertFloatXxx()

 Expected value; required
 Actual value; required
 Delta (leeway; allowable difference); required
 Message to display on failure; optional

 assertXxx() (everything else)
 Expected value; required
 Actual value; required
 Message to display on failure; optional

Write Test Case: Examples
if (%scan('TEST' : value) <> 1);

fail('value does not start with TEST');

endIf;

assertOn(rowFound, 'Row not found');

assertCharEquals(expected, actual, 'Name');

assertNumericEquals(12.00, extendedAmount, 'Item price');

assertDateEquals(today, invoiceDate, 'Invoice date');

Run Tests
 Call IBMiUnit command.

 Example

 IBMiUnit/RUNTEST SUITE(TEXTUTIL_T)

UI(*DSPLY)

 No feedback if all tests are successful

 Helps you focus on the problems

Result Status
 Successful

 Failure

 A state detected by your code

 From fail() or assertXxx()

 Error

 A problem encountered, but not detected, by your code

 Level check, divide by 0, array index out of bounds, …

Standards
 Keep test code separate from production code.

 Keep Service programs clean

 Don’t hard code.

 Keep comments clear and concise

 Keep code consistent.

 Keep Naming conventions the same

 Orders Service Program = Orders_T Testing program.

Bring it all together
 Old code has been modernized and brought into a service

program.

 Created new methods and new program to call the
methods.

 Created testing program to test new methods.

 Replace the calling programs with a call to the method or
the new program.

Demo Time!

Add IBMiUnit library

Run IBMiUnit interactive

Final Thoughts..
 Service programs are very easy to adopt.

 By having service programs you can easily incorporate
unit testing.

 It’s a process to modernize, its worth it in the end.

Thank you!!
My contact Info

Marina Schwenk

 marinaschwenk23@gmail.com

 @marinaschwenk26 on twitter

mailto:marinaschwenk23@gmail.com

