Group By, Having
 and multi-dimensional Grouping

Birgitta Hauser

Diplom-Betriebswirt (BA)
Software and Database Architect
Hauser@SSS-Software.de

Landsberg am Lech - Schmalzturm (1295)

SELECT Statement

WITH - Common Table Expressions (CTE)

Full Select

SELECT Columns/Fields (incl.scalar/UD functions) From Files/Tables/Views/UDTFs incl. Joins Where Conditions Group By Clause Having Clause \qquad Sub-Select
Start With Connect By (Release 7.1 PTF) Order By Clause Fetch First x Rows Only (Release 6.1)

Merge several Sub-Selects using:

- UNION / EXCEPT / INTERSECT

SELECT Columns/Fields (incl.scalar/UD functions From Files/Tables/Views/UDTFs incl. Joins Where Conditions Group By Clause Having Clause \qquad Start With Connect By (Release 7.1 PTF)
Order By Clause (Release 6.1) Fetch First x Rows Only (Release 6.1)

Sub-Select

ORDER BY Clauses
Fetch First x Rows, Limit/Offset, For Update Of, Optimize For x Rows

GROUP BY Clause

Used to arrange identical data into groups

- For multiple identical data is only a single row returned
- Often used in composition with aggregate functions for accumulating results

Positioned in a SELECT-Statement

- After the WHERE Condition
- After the FROM Clause (if there are no WHERE conditions)

GROUP BY Clause - Syntax

```
SELECT List Columns/Expression, AggregateFunctions
    FROM Schema.Table or View
    GROUP BY List Columns/Expressions
```

Condensing Data from multiple Rows

- All Columns/Expressions without Aggregate Function (Grouping Expression) have to be repeated after Group BY
- Generated Names for columns/Expr. in the Select List are not allowed \rightarrow same Sub-Select

SelectYear(SalesDate) $\frac{\text { SalesYear }}{\text { Sum(Amount) Total, }}$, From Sales Group By Year(SalesDate), CustNo Order By SalesYear, SustNo;				
SALESYEAR	CUSTNO	TOTAL	POSI	
2008	10001	115,00		2
2008	10002	1350,00		1
2008	10003	535,00		3

> - Grouping Expression must be repeated in the GROUP BY Clause

[^0]
Aggregate Functions Before Release 7.3

Aggregate Functions	
Function Name	Description
AVG()	Average of a set of numbers
Count()	Number of rows/values in a set of rows/values
Count_Big()	Number of rows/values in a set of rows/values
	Similar to COUNT but the result can be greater than the maximum value of integer
Max()	Maximum value in a set of values in a group
Min()	Minimum value in a set of values in a group
Sum()	Sum of a set of numbers
StdDev()	biased standard deviation (/n) of a set of numbers
StdDev_Samp()	sample standard deviation (/n-1) of a set of numbers
Variance()	biased variance (/n) of a set of numbers
Variance_Samp()	sample variance (/n-1) of a set of numbers
${ }^{170.062020}$	

Aggregate Functions New Release 7.3

Aggregate Functions	
Function Name	Description
Correlation()	Coefficient of correlation of a set of number pairs
Covariance()	(Population) Covariance of a set of number pairs
Covariance_Samp()	Unbiased Sample Covariance ($\mathrm{n}-1$) of a set of number pairs
Median()	Median of a set of numbers
Percentile_Cont()	Value that corresponds to the specified percentile given a sort specification by using a continuous distribution model
Percentile_Disc()	Value that corresponds to the specified percentile given a sort specification by using using a discrete distribution model.
Regression_Functions	
Regr_Count()	number of non-null number pairs used to fit the regression line
Regr_Intercept()	y-intercept of the regression line ("b" in the equation $\mathrm{y}=\mathrm{a}$ * $\mathrm{x}+\mathrm{b}$)
Regr_R2()	coefficient of determination ("R-squared" or "goodness-of-fit") for the regression
Regr_Slope()	Slope of the line ("a" in the equation $\mathrm{y}=\mathrm{a}$ * $\mathrm{x}+\mathrm{b}$)
Regr_AVGX()	can be used to compute various diagnostic statistics needed for the evaluation of the quality and statistical validity of the regression model
Regr_AVGY()	
Regr_SXX()	
Regr_SXY()	
Regr_SYY()	
17.06.2020	OMNI User Group 2020-Group By, Having and Multi-dimensional Grouping - Birgitta Hauser Page 11

GROUP BY Clause - Examples

- Accumulating Sales per Customer
- COUNT(*) Counts the number of Rows per Customer
- SUM() Summarizes the AMOUNT of all Customer rows
- AVG() Calculates the Average of all Customer rows CAST() formates the Float result returned by the AVG() function
- MIN() Returns the Minimum AMOUNT of the Customer
- MAX() Returns the Maximum AMOUNT of the Customer

GROUP BY Clause - Examples

Select Year(SalesDate) SalesYear, CustNo,Count(*) "NbrRows", Sum(Amount) "Total",Cast (Avg(Amount) as Dec(11, 2))Min(Amount) "Minimum", Max(Amount) "Maximum"From SalesWhere ItemNo Between '5100' and '5300'Group By Year(SalesDate), CustNoOrder By CustNO, SalesYear;						
SALESYEAR	CUSTNO	NbrRows	Total	Average	Minimum	Maximum
	10001	2	115,00	57,50	55,00	60,00
	10001	15	2634,20	175,61	20,00	450,85
	10001	2	281,94	140,97	140,97	140,97
	10002	1	1350,00	1350,00	1350,00	1350,00
	10002	3	489,90	163,30	20,00	444,50
	10003	1	350,00	350,00	350,00	350,00
	10003	3	853,10	284,36	180,00	444,50
	10004	8	1963,55	245,44	150,00	431,80
	10005	1	310,00	310,00	310,00	310,00
	10005	3	904,45	301,48	225,00	393,70
	10006	4	2247,30	561,82	495,00	628,65

- Grouping Expression

- GROUP BY and ORDER BY different sequence
- WHERE Condition - Column not included in the Grouping Expression

Aggregate Functions and Distinct Values

Distinct

Eliminates duplicate rows of the final result table

- DISTINCT must be specified immediately after SELECT

Example: Determine all customers from the Order Header table with at least one order that is not yet delivered. Using DISTINCT each customer is only returned once.

Select Distinct CustNo
From OrderHdrx Where DelDate between '2009-01-01' and
CUSTNO
20004
10003
10002
00005

Aggregate Functions with DISTINCT

Distinct can be specified within Aggregate Functions

- Duplicates are only considered once

> Example: Determine the number of different customers from the Order Header Table with at least one order within a specific period

Aggregate Functions with DISTINCT over multiple Columns Example

- Determine the number of Customer No/Item No Pairs (Total 16 Pairs)

Aggregate Functions with DISTINCT - Examples

```
Select Year(SalesDate) SalesYear,
    Count(*) "Nbr Positions",
    Count(Distinct CustNo)
    Count(Distinct ItemNo)
    Count(Distinct CustNo concat ItemNo) "Nbr Customer/Items"
    From Sales
    Group By Year(SalesDate)
    Order By SalesYear
<
\begin{tabular}{r|r|r|r|r} 
SALESYEAR & Nbr Positions & Nbr Customer & Nbr Items & Nbr Customer/Items \\
2008 & 9 & 5 & 3 & 6 \\
2009 & 53 & 5 & 4 & 14 \\
2010 & 25 & 3 & 3 & 4
\end{tabular}
```


NULL Predicate

What are NULL Values?

- Values out of the Valid Range
- Neither Blank nor Zero nor x‘00‘
- Selecting everything between high and low value \rightarrow will NOT return NULL values

NULL Value in the Database

- Separate flag set to *On/*Off \rightarrow Must be checked separately

Convert Default Values into NULL Values

```
COALESCE(Column, Default1, Default2, ... DefaultN) or
IFNULL(Column, Default)
```


Converts a NULL Value into a Default Value

- Can be used for all data types
- COALESCE is more powerful than IFNULL \rightarrow Multiple Default Values can be specified

Select h.Company, h.OrderNo, h.DelDate,
Coalesce(ItemNo, 'No Order Position') Item,
Coalesce(OrderQty, 0) OrderQty
from OrderHdrX h left outer join OrderDetX d
on h.Company $=$ d.Company and h.OrderNo $=$ d.OrderNo

COMPANY	ORDERNO	DELDATE	ITEM	ORDERQTY		
	BNR2009-10-15/1	2009-08-20	CF001	10	- Convert a Default value into a NULL value	
	BNR2009-10-15/1	2009-08-20	CF003	15 - Conver		
	BNR2009-10-15/1	2009-08-20	HG001	3		
	BNR2009-10-15/1	2009-08-20	BS002	20	Page 22	of
	BNR2009-10-23/5	2009-08-28	No Order Position	0		
	BNR2009-10-30/2	2009-09-09	BS001	50		
17.06.2020		OMNI User Group 2020 - Group By, Having and Multi-dimensional Grouping - Birgitta Hauser				

Convert NULL Values into Default Values

NULLIF (Column, ToReplace)

Converts a specified Value into a NULL Value

- Can be used for all data types

NULL Values and Aggregat Functions

NULL values are ignored by aggregat functions

- Important for COUNT(), AVG(), MIN(), MAX()
- Example: 6 rows with 2 NULL values \rightarrow Count(Column) $=4$
- COUNT (*) Counts ALL rows even if there is a row with only NULLs

NULL Values in Aggregate Functions are ignored - Example

$\begin{aligned} & \text { Select * } \\ & \text { From NULLFile; } \end{aligned}$				
\leqslant				
MYINT	MYCHAR	MYDEC	MYDATE	MYGRAPH2
$1-$		--		-
2 AAA		--		-
1 BBB		--		BBB
1 -		123,00-		-
2 -		456,00-		-
2 AAA		777,00-		-
3 CCC		444,00-		CCC
1 -			2007-02-21	-
1 XXX			2007-01-31	XXX
$2-$		1000,0	2007-05-15	BBB
2 AAA			2007-05-15	-
3 AAA			2007-01-07	AAA
2 AAA		2000, 0	2007-01-07	BBB
2 XXX		900,0	2007-01-07	BBB
2 AAA		700,0	-	-
2 AAA		300,0	-	-

Having Clause

```
SELECT List Columns/Expression, AggregateFunctions
    FROM Schema.Table or View
    GROUP BY List Columns/Expression
    HAVING Where Conditions for AggregateFunctions
```


Having = WHERE Conditions for Aggregate Functions

- WHERE conditions only allowed for Column Values but NOT for aggregated Values
- Examples: Select customers with a total amount $>x$ Euro Select all orders with more than y positions

Having Clause

```
SELECT List Columns/Expression, AggregateFunctions
    FROM Schema.Table or View
    GROUP BY List Columns/Expression
    HAVING Where Conditions for AggregateFunctions
```


Compare the result of aggreagate functions

- Comparison Operators
$\circ=$ (Equal) $>$ (Greater than) $>=$ (Greater equal)
-<> (Not equal) < (Lower than) <= (Lower equal)
- Predicates
- IN (List values) BETWEEN (Range)

Having Clause

```
SELECT List Columns/Expression, AggregateFunctions
    FROM Schema.Table or View
    GROUP BY List Columns/Expression
    HAVING Where Conditions for AggregateFunctions
```

Multiple Conditions can be specified

- Linked through logical Operators
- AND = Logical AND OR = Logical OR NOT = Locigal NOT

Parenthesis can be set

Having Conditions Examples

Multi-dimensional Grouping

New Extentions for the Group By Clause:

- Cube(Grouping Columns/Fields)
- RollUp(Grouping Colums/Fields)
- Grouping Sets(Grouping Columns/Fields)

Cube and Rollup can be specified within the Grouping Sets()

Multi-dimensional Grouping - RollUp() Extention

RollUp() Extention

- Generate Sub-Totals based on the colums specified with RolluP()

Example: Group By RollUp (Year, Month, Day)

- Generates the following Sub-Totals:
- Sub-Total per Year, Month, Day
- Sub-Total per Year, Month,
- Sub-Total per Year
- Grand Total
- Sequence of the result set depends on the ORDER BY Clause

Multi-dimensional Grouping RollUp() Extention - Example

- Sales per Year and Customer
- Sub-Totals:
- Year/Customer
- Year
- Grand Total

Mulit-dimensional Grouping Cube Extention

Extention Cube

- Generates Sub-Totals for each possible composition of columns specified in Group By Clause \rightarrow All Sub-Totals created by RollUp() + "cross tabulation")

Example: Group By Cube(Year, Customer, ltem)

- Generates the following Sub-Totals:
- Sub-Total per Year, Customer, Item
- Sub-Total per Year, Customer
- Sub-Total per Year, Item
- Sub-Total per Customer, Item
- Sub-Total per Year
- Sub-Total per Customer
- Sub-Total per Item
- Grand-Total
- Sequence of the Result Set depends on the ORDER BY Clause

Multi-dimensional Grouping Cube() versus RollUp() - Examples

```
select Year(SalesDate) SalesYear, CustNo, ItemNo,
    Sum(Amount) Total
```

From Sales
where SalesDate between '2008-10-01'
and CustNo in ('10001', '10002')
Group By Cube(Year(SalesDate), CustNo, Item)
brder By SalesYear, CustNo, Item

select Year(SalesDate) SalesYear, CustNo, Ite
\quad Sum(Amount) Total
From Sales
where SalesDate between '2008-10-01'
and '2009-03-31'
and CustNo in ('10001', '10002')
Group By Cube(Year(SalesDate), CustNo, Item)
200910001 Grisham, John - Die Akte 180,00

200910001	Grisham, John - Die Akte	180,00
200910001	King,Stephen - Drei	160,00
200910001	-	340,00
$2009-$	Grisham, John - Die Akte	180,00
$2009-$	King,	

$2009-$	Grisham, John - Die Akte	180,0
$2009-$	King,Stephen - Drei	160,0

select Year(SalesDate) SalesYear, CustNo, Item, Sum(Amount) Total
From Sales
where SalesDate between '2008-10-01'
and '2009-03-31'
and CustNo in ('10001', '10002')
Group By RollUp(Year(SalesDate), CustNo, Item) Order By SalesYear, CustNo, Item

Multi-dimensional Grouping - Grouping Sets () Extention

Grouping Sets() Extention

- Define any grouping level/sub-totals you want

Example: Grouping Sets((A, B, C), (B, C), ())

- Generates the following sub-totals:
- Sub-Total per A, B, C
- Sub-Total per B, C
- Grand Total
- Sequence of the Result Set depends on the ORDER BY Clause

Multi-dimensional Grouping Grouping Sets() - Example

Multi-Dimensional Grouping - Aggregat-Function Grouping

Grouping(ColumnName)

Aggregate-Function: Grouping (Column)

- Can only be used in composition with multi-dimensional Grouping

Identifies NULL Values in Sub-Total Rows

- 1 = NULL value in the specified column in the sub-total row
- $\mathbf{0}=$ No NULL value in the specified column

Multi-dimensional Grouping - Aggregate Function Grouping Example

With x as (Select Year(SalesDate) SalesYear, CustNo, Amount from Sales)			
select Case When Grouping(SalesYear) $=1$			
SalesYear, CustNo, Sum(Amount) as Total from x Group By Rollup(SalesYear, CustNo) Order By SalesYear, CustNo			
00001	SALESYEAR	CUSTNo	total
	2008	10001	115,00
	2008	10002	1350,00
	2008	10003	535,00
	2008	10004	470,00
	2008	10005	310.00
Total Year 2008	2008		2780,00
	2009	10001	2634,20
	2009	10002	1636,25
	2009	10003	4589,86
	2009	10004	2673,95
	2009	10005	3741.95
Total Year 2009	2009		15276,21
	2010	10001	281,94
	2010	10003	1555,75
	2010	10006	10425,70
Total Year 2010	2010		21263,39
Grand Total		-	39319,60

- Generate Summary Textes based on the GROUPING Aggregate Function

Multi-dimensional Grouping - Aggregate Function Grouping Example

```
- Display Sub-Totals and Grand Total only
With x as (Select Year(SalesDate) SalesYear, CustNo, Amount
    from Sales)
Select Case When Grouping(SalesYear) = 1
    Then 'Grand Total'
    When Grouping(CustNo) = 1
    Then 'Total Year ' concat Varchar(SalesYear)
    Else '' End,
        SalesYear, CustNo, Sum(Amount) as Total
    from x
    Group By Rollup(SalesYear, CustNo)| O Based on a Having Condition
    Having Grouping(CustNo) = 1
    Order By SalesYear, CustNo
\begin{tabular}{|l|cc|c|}
\hline \hline \hline 00001 & SALESYEAR & CUSTNO & TOTAL \\
Total Year 2008 & \(2008-\) & 2780,00 \\
Total Year 2009 & \(2009-\) & 15276,21 \\
Total Year 2010 & \(2010-\) & 21263,39 \\
Grand Total & -- & 39319,60 \\
\hline
\end{tabular}
```

- Based on a Having Condition in composition with the Grouping Aggregate Function

Any Questions?

Landsberg am Lech

Special Thanks to

Holger Scherer - RZKH Rechenzentrum Kreuznach

- For providing an IBM i-System enabling the creation of the samples/code used in my presentations
- http://www.rzkh.de

Your data is save! ... in the bunker

References

IBM i Information Center

- DB2 for i SQL Reference
http://www-01.ibm.com/support/knowledgecenter/ssw ibm i 74/rzajp/rzajppdf.pdf?lang=en
- Embedded SQL programming
http://www-01.ibm.com/support/knowledgecenter/ssw ibm i 74/db2/rbafzpdf.pdf?lang=en
- RPG Reference
https://www.ibm.com/support/knowledgecenter/ssw ibm i 74/rzasd/sc092508.pdf?view=kc

IBM Redbooks

- Who Knew You Could Do That with RPG IV? Modern RPG for the Modern Programmer http://www.redbooks.ibm.com/abstracts/sg245402.html?Open
- Modernizing IBM eServer iSeries Application Data Access - A Roadmap Cornerstone http://www.redbooks.ibm.com/abstracts/sg246393.html?Open
- Modernizing IBM i Applications from the Database up to the User Interface and Everything in Between http://www.redbooks.ibm.com/abstracts/sg248185.html?Open

Speaker's Biography

Birgitta Hauser

Diplom-Betriebswirt (BA)
Database and Software Architect
Birgitta Hauser worked on the IBM i and its predecessors since 1992. She graduated with a business economics diploma, and started programming on the AS/400 in 1992. She worked and works as traditional RPG Programmer but also as Database and Software Engineer, focusing on IBM i application and database modernization.

Currently she is self-employed and works in Consulting and Application and Database Modernization on IBM i and Db2 for i. Since July, 2019 she is occasionally working for Fresche Solutions Inc. (Montréal) as a contractor.
She also works in education as a trainer for RPG and SQL developers.
Since 2002 she has frequently spoken at the COMMON User Groups and other IBM i and Power Conferences in Germany, other European Countries, USA and Canada.
In addition, she is co-author of two IBM Redbooks and also the author of several articles and papers focusing on RPG and SQL for the ITP Verlag (a German publisher), IT Jungle Guru and IBM DeveloperWorks.
In 2015 she received the John Earl Speaker Scholarship Award. In 2018 she received the Al Barsa Memorial Scholarship Award.
IBM Champion 2020

Thank you

Group By, Having and multi-dimensional Grouping?

Yes I can!

If you are interested in more detailed individual Workshops on-site or remote,
Please contact me directly

Birgitta Hauser

Diplom-Betriebswirt (BA)
Database and Software Architect
Hauser@SSS-Software.de

[^0]: - Order By Clause Outside the Sub-Select \rightarrow Generated names can be used

